skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Geitmann, Anja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geitmann, Anja (Ed.)
    During sexual reproduction in flowering plants, pollen grains germinate on the stigma surface and grow through the stigma-style tissue to reach the ovary and deliver sperm cells for fertilization. Here, we outline a method to test whether a pollen fertility mutation specifically disrupts pollen penetration through the stigma-style barrier. This method surgically removes the stigma-style (stigma decapitation) to test whether transferring pollen directly onto an exposed ovary surface significantly improves the transmission efficiency (TE) of a mutant allele. To illustrate this technique, we applied stigma decapitation to investigate a loss-of-function mutation in Arabidopsis OFT1, a gene encoding a putative o-fucosyl transferase functioning in the secretory pathway. oft1-3 mutant pollen showed a significant decrease in transmission efficiency compared to wild type. Decapitation crosses (described here) indicated that the removal of the stigma-style barrier alleviated the transmission deficiency from 858-fold to a 2.6-fold, providing evidence that most, but not all, oft1 pollen deficiencies can be attributed to a reduced ability to penetrate through the stigma-style barrier. This method outlines a genetic strategy to quantify a mutation's impact on the ability of pollen to navigate through the stigma-style barrier on its journey to the ovule. 
    more » « less